skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vieira, Simone Aparecida"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Private lands are important for conservation worldwide, but knowledge about their effectiveness is still insufficient. To help fill this important knowledge gap, we analyzed the impacts of a national policy for conservation on private lands in Brazil, a global biodiversity hotspot with high potential for nature-based climate solutions. Through the evaluation of over 4 million private rural properties from the Rural Environmental Cadastre, we found that the last policy review in 2012 mainly affected the Amazon Forest. The amnesty granted to 80% of landowners of small properties prevented the restoration of 14.6 million hectares of agricultural land with a carbon sequestration potential of 2.4 gigatonnes. We found that private lands exist within the limits of public conservation areas and that between 2003 and 2020 deforestation rates in these private lands were higher than those across all conservation areas. The Rural Environmental Cadastre can be an effective tool for managing forests within private lands, with potential to integrate governance approaches to control deforestation and mitigate climate change. 
    more » « less
  2. Tree growth and longevity trade-offs fundamentally shape the terrestrial carbon balance. Yet, we lack a unified understanding of how such trade-offs vary across the world’s forests. By mapping life history traits for a wide range of species across the Americas, we reveal considerable variation in life expectancies from 10 centimeters in diameter (ranging from 1.3 to 3195 years) and show that the pace of life for trees can be accurately classified into four demographic functional types. We found emergent patterns in the strength of trade-offs between growth and longevity across a temperature gradient. Furthermore, we show that the diversity of life history traits varies predictably across forest biomes, giving rise to a positive relationship between trait diversity and productivity. Our pan-latitudinal assessment provides new insights into the demographic mechanisms that govern the carbon turnover rate across forest biomes. 
    more » « less